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Abstract In recent years the periphery of the Arctic sea ice cover has undergone significant changes, with
a reduction in summer ice extent, a thinning of the ice, and a shift from multiyear to first year ice. Here we
examine sea ice conditions during nine summers between 2000 and 2013 in the interior of the ice pack, using
autonomous measurements of sea ice mass balance deployed near the North Pole. Results exhibit no
definitive trends. There is large interannual variability, with surface melt ranging from 0.02m to 0.50m and
bottommelt from 0.10m to 0.57m. The largest amounts of bottom melt have occurred in the past few years.
For all 9 years the ice at the end of the melt season was at least 1.2m thick.

1. Introduction

There have been profound changes in the Arctic sea ice cover in recent years. Record September minimum
ice extents were observed in 2005, 2007, and 2012 [Comiso, 2012; Cavalieri and Parkinson, 2012; Serreze et al.,
2007; Stroeve et al., 2007, 2012]. The 2012 extent of 3.4 million km2 was only 55% of the 1981–2010 average of
6.2 million km2 [Jeffries and Richter-Menge, 2013]. While there was a substantial increase to 5.1 million km2 in
the 2013 minimum ice extent, the overall trend is still strongly downward. Submarine, aerial electromagnetic
surveys, and satellite observations have shown a decrease in ice thickness [Rothrock et al., 2008; Giles et al.,
2008; Haas et al., 2008; Kwok and Rothrock, 2009; Kwok et al., 2009; Haas et al., 2010; Laxon et al., 2013].
Large reductions in March ice thickness have been observed in the southern Beaufort and Chukchi Sea region
in recent years, while conditions in the central Arctic have remained consistent [Richter-Menge and Farrell,
2013]. There has also been a shift from primarily perennial ice pack to seasonal ice [Maslanik et al., 2011;
Nghiem et al., 2007]. Large decreases in summer sea ice coverage have been observed, particularly in the
peripheral seas of the western Arctic (Beaufort, Chukchi, East Siberian, and Laptev). Zhang et al. [2013]
demonstrated how storm-induced vertical mixing of ocean could greatly increase bottom melting.

The observed decreases in the Arctic sea ice cover are due to many factors [Serreze et al., 2007]. Contributions
to ice loss include warming [Overland et al., 2008], atmospheric circulation and ice motion changes [Rampal
et al., 2009; Hutchins and Rigor, 2012], shifts in cloud cover [Kay et al., 2008; Schweiger et al., 2008], advected
ocean heat [Polyakov et al., 2010; Woodgate et al., 2010], heat from river discharge [Nghiem et al., 2014],
and the ice albedo feedback [Perovich et al., 2007, 2008]. These sea ice losses have brought into question the
long-term survivability of the summer ice cover.

Here we consider ice conditions in a region between the North Pole and the Greenland Sea, which remains
dominated by thicker, multiyear ice. We examine results from autonomous sea ice mass balance buoys
operating during the summer from 2000 to 2013 [Richter-Menge et al., 2006]. The one-dimensional mass
balance measured by the buoys documents the amount of ice growth and snow accumulation in the winter
and the amount of surface and bottom melt in the summer. These measurements integrate both the surface
and the bottom heat budgets of the ice cover, thus providing insight into the timing and magnitude of
atmospheric and oceanic forcing. Annual ice losses due to summer surface and bottommelt and trends over
the past 14 years are examined.

2. In Situ Sea Ice Mass Balance Observations

Autonomous ice mass balance buoys (IMB) have been deployed in the sea ice cover at the North Pole
Environmental Observatory (NPEO) [Morison et al., 2002] every April since 2000. These buoys measure the sea
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ice mass balance using sensors
monitoring changes in snow deposition
and ablation, ice growth, and ice
surface and bottommelt [Richter-Menge
et al., 2006; Perovich and Richter-Menge,
2006]. We present ice mass balance
results from nine summers from 2000
to 2013. Buoys from four other
summers within this period were lost
due to ice conditions, wildlife, and
instrument failures.

IMBs discussed in this paper were all
deployed near the North Pole in April.
Each IMB was installed in sea ice that
was typical of ice in the region, avoiding
both relatively thin ice and deformed
ice. While these buoys were deployed
near the North Pole, because they are
installed in floating sea ice, they drifted
south, ultimately exiting out through
the Greenland Sea. The drift tracks of
the buoys from 1 June to 1 October are
displayed in Figure 1. Buoy positions on
the first of each month are noted. The
general drift direction is always south
toward the Greenland Sea.

3. Results and Discussion

Results from the nine IMBs are
summarized in Table 1. Since the buoys

were installed in April, there was only modest ice growth before the onset of melt in June. The maximum
ice thickness at melt onset ranged from 1.77m (2010) to 2.80m (2012), with maximum snow depths from
0.04m (2008) to 0.38m (2012). In all cases, the ice cover was still substantial at the end of summer melt with
thicknesses from 1.25 (2000 and 2008) m to 2.60m (2004). Unlike ice in other regions, such as the Beaufort
Sea [Barber et al., 2009; Perovich et al., 2008] that have seen major ice melt and deterioration, the ice cover
in this region of the central Arctic (Figure 1) is still robust at the end of summer melt.

Figure 2 summarizes surface and bottom melt for the 9 years of observations. The snow melt is expressed in
terms of the ice equivalent snow melt (Si) using the expression

Si ¼ ρs=ρið ÞHs;

where Hs is the snow depth, ρs is the snow density set to 300 kgm�3, and ρi is the ice density set to 900kgm
�3.

The large amount of interannual variability in both surface and bottom melt is evident in the figure. While the
snow completely melted in all cases, there was great interannual variability in the amount of surface ice
melt, ranging from as little as 0.02m in 2010 up to 0.50m in 2007. Bottom melt showed similar variability
ranging from 0.10m (2004) to 0.57m (2012). The total amount of snow (ice equivalent) and ice melt varied by
a factor of 5 from 0.23m in 2004 to 1.13m in 2012, averaging 0.66m.

While there is tremendous year to year variability in the amount of surface melt, no trend is evident.
There does, however, seem to be an increase in the amount of bottom melt. The four largest bottom melts
occurred from 2008 to 2013. The average bottom melt was 0.48m for this period and was more than
twice the 2000–2005 average of 0.22m. Should this increase in bottom melt continue, it would have
repercussions for the health of the ice cover.

Figure 1. Drift tracks of IMBs during the melt season from 1 June to 1
October. The black cross is the North Pole. Parts of Greenland and Svalbard
are on the lower left and right, respectively.
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The relative amounts of surface and
bottom melt are compared in the
scattergram in Figure 3. There is no
obvious correlation between
surface and bottom melt and the
coefficient of determination (R2) is
0.00. In 4 years there was more
surface melt (2000, 2004, 2005, and
2007), in 4 other years there was
more bottom melt (2002, 2008,
2010, and 2013), and in 2012
surface and bottom melt were
essential equal. In some years there
was actually an inverse relationship
between surface and bottom melt,
with one large and the other small
(e.g., 2005, 2007, 2008, and 2010).

The ice mass balance observations
show significant ice remaining
at the end of summer, large
interannual variability in melt, and
no strong connection between the
amount of surface and bottom
melt. These results raise three
questions: (i) Why is the large melt
observed in locations such as the
Chukchi and Beaufort Seas not
occurring in our study region? (ii)
What is driving the interannual
variability? and (iii) Is summer melt
near the North Pole correlated
with large-scale changes in the sea
ice cover?

Large amounts of surface and
bottommelt have been observed in
the Beaufort Sea, often resulting in
the complete regional loss of the
ice cover. Why has this not been
observed at the North Pole? At least
part of the reason is solar radiation.
At the North Pole there is less
incident shortwave irradiance,
particularly in spring and early
summer. Using results from the
ERA-40 reanalysis, we calculated
the average incident solar
irradiance in the Beaufort Sea
(76.9°N, 165°W) and near the North
Pole (89.1°N, 0°E) averaged from
1979 to 2011. Integrated over the
entire year the incident solar
irradiance was 2770MJm�2 in the
Beaufort Sea and 2340MJm�2Ta
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near the North Pole. The difference in
incident irradiance is 431MJm�2,
with 265MJm�2 of this difference
deposited in the spring and early
summer prior to 30 June each year.
Less incident shortwave likely leads to
less heat deposited in the ice and
upper ocean and, hence, less melting.

Relationships between surface and
bottom melt and three possible driving
factors (ice extent, Arctic Oscillation
index, and buoy latitude) are explored
in Figure 4. The change in ice extent
between March and September is a
measure of the overall amount of ice
loss that occurred Arctic wide during
summer. Previous studies [Rigor et al.,
2002; Maslanik et al., 2007] have
explored the connection between the

Arctic Oscillation index and ice extent. We compare melt to the Arctic Oscillation index averaged from June
through August. The IMB latitude on 1 September is a measure of both how far south the buoy drifted and
how fast it traveled during the summer. Bottom melt has also been related to the amount of open water and
solar heat input to the upper ocean [Perovich et al., 2008, 2011]. Unfortunately, this relationship could not be
examined for the NPEO ice mass balance buoys, since they were too far north for passive microwave satellite
observations of ice concentration.

Surface melt does not correlate with any of the three factors. There is considerable scatter in all three
surface melt plots, and values of R2 are small (0.01 to 0.16). Surface melt is also not correlated with the total
incident shortwave irradiance from 1 June to 1 September. There is a modest correlation (R2 = 0.48)
between the amount of surface melt and the length of the melt season. We also expect surface melting to
be influenced by the intensity of the melt season, the timing of the melt season, the amount of snow cover,
and the longwave and turbulent fluxes. Bottommelt shows a modest correlation with change in ice extent,

with 2007 as a major outlier. An examination of the
details of the 2007 ice mass balance record shows
that a false bottom may have been present at the
underside of the ice for much of July. A false
bottom is an ice layer that forms beneath the ice
bottom at the interface between fresh meltwater
and saline ocean water [Notz et al., 2003]. A false
bottom isolates the true ice bottom from the ocean
thereby limiting the amount of bottom melt.
Removing the 2007 point increases R2 from 0.51 to
0.79 indicating that large decreases in overall ice
extent are associated with increased amounts of
bottom melt at the NPEO sites (Figure 1). Bottom
melt is uncorrelated with average Arctic Oscillation
index (R2 = 0.10). The strongest relationship is
between bottom melt and 1 September latitude
(R2 = 0.92). Bottom melt increased linearly with the
distance of the southward transit by 1 September.
The increase in bottom melt was 0.08m per degree
of latitude. Increased bottom melt was likely a
result of increased solar heat deposited in the
upper ocean [Perovich et al., 2011].

Figure 2. Histogram of surface ice melt (blue), ice equivalent snow melt
(cyan), and bottom ice melt (red) for nine ice mass balance buoys.
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Figure 3. Scattergram of surface ice melt versus bottom
ice melt. The dashed line shows a 1:1 surface to bottom
melt relationship.
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Multiple factors, including others not explored here, may be influencing surface and bottom melt, but with
only nine data points; opportunities for multiple regression analysis are limited. Focusing on the two most
recent record-setting minimum ice extent years, 2007 and 2012, 2012 had the largest amount of surface
melt and 2007 was a close second. The largest amount of bottom melt was observed in 2012, but 2007 was
the second smallest bottommelt, likely influenced by the false bottommentioned above. Even in these years,
however, the NPEO ice was still more than 1.5m thick at the end of summer melt.

What conditions and forcingwould it take tomelt the North Pole ice? A general trend ofwarmer air temperatures
would gradually increase surface melt, and over time this could result in the complete loss of the summer ice
cover in this region. Based on ice mass balance observations in other regions, however, rapid sea ice loss is
typically associatedwith large increases in bottommelt. The upper ocean heat driving the bottommelt can either
be advected from other regions or be locally deposited solar radiation [Perovich et al., 2008; Woodgate et al.,
2010]. It follows that decreased summer ice concentration in the North Pole region would result in more solar
heat deposited in the upper ocean and increased melting. Changes in the character of the ice being advected
into the North Pole region, to include increased first year ice and/or thinner ice, could also play an important
role in changing the resilience of ice in this region. A shift to first year ice will result in more ponding and
enhanced solar absorption in the ice and upper ocean [Perovich and Polashenski, 2012].

Even though the ice at the North Pole in April survives summer melt, it does not last until the next spring. The
ice is in transit, headed from the North Pole area in April to the Greenland Sea and eventually out the
Fram Strait. When the ice enters Fram Strait several months later, between December and March, contact
with warm Atlantic waters results in complete ice melt, even in midwinter.

4. Conclusions

There has been considerable discussion in recent years about the potential for an Arctic with no sea ice in
summer. Overall, ice conditions at the North Pole have changedmuch less than in the Arctic’s peripheral seas.

Figure 4. Scattergrams of surface and bottom melt versus (left column) change from March to September ice extent; (middle column) average summer (1 June to
1 September) Arctic Oscillation index; and (right column) latitude of ice mass balance buoy on 1 September. The colors correspond to the drift tracks in Figure 1.
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At least under the present conditions, summer sea ice in the general vicinity of the North Pole is surviving
summer melt. For the 9 years studied from 2000 to 2013, ice thickness at the end of melt season was at
least 1.2m. At the high latitudes near the North Pole, the incident solar radiation is less than in more southern
regions, such as the Beaufort Sea, and melting is less. Additionally, the North Pole region currently
remains removed from peripheral seas and marginal ice zones, from where large amounts of ocean heat
could be advected.

While results from 2000 to 2013 exhibit no definitive trends in surface and bottom melt, there are a number
of interesting findings. There is large interannual variability, with surface melt ranging from 0.02m to 0.50m
and bottom melt from 0.10m to 0.57m. The years with the largest amount of surface melt were also years
of record minimum ice extent: 2005, 2007, and 2012. The largest amounts of bottom melt have occurred
from 2008 to 2013 and are more than double the average from 2000 to 2005, perhaps indicating increased
upper ocean warming and foreshadowing greater melt in this region in the future.
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